Update on MOD17, GPP and NPP, and MOD16 ET

Steven W. Running Numerical Terradynamic Simulation Group College of Forestry and Conservation University of Montana

MODIS Science Team Meeting

April 16, 2013

The Human Perturbation of the CO₂ Budget (2000-2009)

Efficiency of Natural Sinks

Global Trend in NPP (1982 – 2009) AVHRR + MODIS with EOS algorithm

Global Terrestrial Net Primary Production (1982-2012)

+/- 1Pg or about 2%

Nemani et al 2003, Zhao and Running 2010

Global MODIS NPP Anomaly

R = -0.89, p < 0.0006

Temperature is a control factor of growing season for NH but not SH!

For NH, 125 days snow cover For SH, 7.5 days snow cover

Zhao & Running 2010, Science

NPP over two hemisphere trend (2000-2009)

For NH, R = 0.39, p < 0.27For SH, R = 0.87, p < 0.001

Zhao & Running 2010, Science

PERSPECTIVES

ECOLOGY

From Running, SW. Science 337 p1458-1459, 2012

A Measurable Planetary Boundary for the Biosphere

Terrestrial net primary (plant) production provides a measurable boundary for human consumption of Earth's biological resources.

Steven W. Running

Capacity for Bioenergy Production (estimated by ecologists)

Current GBP Estimates

Smith et al. (2012)

THE PROBLEM Temperature + Precipitation does NOT show the landscape aridity

Land Water Balance = Precipitation – Evapotranspiration

PENMAN-MONTEITH equation for Evapotranspiration

$$\lambda E = \frac{\Delta \cdot r_e \cdot (R_n - G_0) + \rho C_p \cdot (e_{sat} - e)}{r_e \cdot (\gamma + \Delta) + \gamma \cdot r_i}$$
Windspeed

Veg Leaf Area

Fairbanks and Tucson have nearly identical annual precipitation, The difference is potential evaporation!

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 Drought Severity Index

